

First Semester FYUGP Degree Supplementary Examination January 2025

KU1DSCMAT111 - BASIC MATHEMATICS I

2024 Admission onwards

Time: 2 hours

Maximum Marks: 70

Section A

Answer any 6 questions. Each carry 3 marks.

- 1. Define a one-to-one function. Give an example.
- 2. Using horizontal line test, show that $y = x^3$ is one-to-one
- 3. Use Sandwich theorem to obtain $\lim_{\theta \to 0} \cos \theta = 1$.
- 4. Determine the integral $\int (x^3 + x)^5 (3x^2 + 1) dx$.
- 5. Determine the integral $\int \sqrt{2x+1} \ dx$.
- 6. Compute $\int_0^1 \frac{1}{x^2 + 1} dx.$
- 7. Verify whether the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 4 & 3 & 2 \\ 6 & 5 & -1 \end{bmatrix}$ is symmetric or not.
- 8. Find the transpose of

$$\begin{bmatrix} 1 & 5 & 6 & 3 \\ 2 & 5 & 7 & 8 \\ 5 & 9 & 2 & 4 \end{bmatrix}$$

Section B

Answer any 4 questions. Each carry 6 marks.

- 9. If $f(x) = x^3 + 1$, find $f^{-1}(x)$ and identify its domain and range
- 10. Compute the value of the limit $\lim_{u\to 1} \frac{u^4-1}{u^3-1}$.
- 11. Simplify: $\ln(\cosh x + \sinh x) + \ln(\cosh x \sinh x)$.
- 12. Determine the integrals

(a)
$$\int \sin^2 x \ dx$$

(b)
$$\int \cos^2 x \ dx.$$

- 13. Evaluate $\int_0^{\ln 2} \frac{e^x}{1 + e^x} dx.$
- 14. Using integration, calculate the area of the triangle the equations of whose sides are y = x, y = 0 and x = 2.

Section C

Answer any 2 questions. Each carry 14 marks.

- 15. If $f(x,y) = x \cos y + ye^x$, determine the second order derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial x \partial y}$.
- 16. (a) Suppose u and v are functions of x that are differentiable at x=0 and that $u(0)=5, u'(0)=-3, v(0)=-1, v'(\dot{0})=2$. Find the values of the following derivatives at x=0.

 (i) $\frac{d}{dx}(uv)$ (ii) $\frac{d}{dx}(7v-2u)$.
 - (b) Calculate the derivative $\frac{d}{dx} \left(\cos^{-1}(x^2)\right)$.
- 17. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, find A^{-1} and verify that $A^3 = A^{-1}$.