#### 

K23U 4077

21. Using Cramer's rule solve the system

22. Find the values of k for which the system

non-trivial solution.

23 If  $y^{dol x} + (lan^{-1} x)^y = 1$ , and dy

Reg. No.:....

Questions 16-22: Answer any 4 questions and 4 questions 3 marks. (4x3=12)

I Semester B.Sc. Degree (C.B.C.S.S. = O.B.E. Regular/Supplementary/ Improvement) Examination, November 2023 (2019 Admission Onwards)

### COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT – BCA: Mathematics for BCA – I

Time: 3 Hours

#### x nie x <sup>2</sup>eoo <sup>2</sup>e = v to ev Max. Marks : 40 i = 1.81 SECTION – A

Questions 1-5: Answer any 4 questions. Each question carries 1 mark. (4

1. What is the derivative of  $y = x^5 - x^3 + x$ ?

2. What is the derivative of  $y = a^{x}$ ?

3. What do you mean by dual of a statement in Boolean Algebra ? - x 8 - x 4 y 4 x 8

4. What do you mean by rank of a matrix?

5. State Rouche's theorem in matrices. 38.89 - 383 + 38.0 = 58 + 98 + 38.0 = 58 + 98 + 38.0 = 58 + 98.0 = 58 + 98.0 = 58.0 = 58 + 98.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.0 = 58.

#### SECTION - B

Questions 6-15: Answer any 7 questions. Each question carries 2 marks. (7×2=14)

6. Find the derivative of y = sec<sup>-1</sup> x sound for a modest 2 year seven A : 35-82 enouse 00

7. If  $y = e^{ax} \sin bx$ , prove that  $y_2 - 2ay_1 + (a^2 + b^2)y = 0$ .

8. Find the n<sup>th</sup> derivative of  $y = \cos(ax + b)$ .

9. State Leibnitz theorem to find the nth derivative of product of two functions.

10. State any four basic theorems in Boolean Algebra.

11. Let a, b ∈ B, a Boolean Algebra. Prove that a + b is an upper bound for the set {a, b}.

12. Define normal form of a matrix. Give an example.

13. Find the rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$ .

14. Define an orthogonal matrix. Give an example.

15. Define linear dependence and independence of vectors.

26. Reduce the mairly

t. What is the derivative of y =

Questions 6-15: Answer arry 7 de

14. Define an orthogonal matrix. Give an example

Define linear dependence and independence of vectors.

V, if  $y = e^{etx}$  sin bx, prove that y

Time: 3 Hours

#### SECTION - C

Questions 16-22: Answer any 4 questions. Each question carries 3 marks. (4x3=12)

16. Find 
$$\frac{dy}{dx}$$
 when  $x = 2 \cos t - \cos 2t$ ,  $y = 2 \sin t - \sin 2t$ . (The meaning of the state of

17. Find 
$$\frac{dy}{dx}$$
 when  $x^3 + y^3 = 3axy$ . If BERUOD BUTCHES YRATHEMS 19MOD

18. Find the n<sup>th</sup> derivative of 
$$y = e^x \cos^2 x \sin x$$
.

19. Find the n<sup>th</sup> derivative of 
$$y = \frac{x}{(x-1)(2x+3)}$$

20. Define Boolean Algebra. Give an example.

21. Using Cramer's rule solve the system of equations: 
$$3x + y + 2z = 3$$
,  $2x - 3y - z = -3$ ,  $x + 2y + z = 4$ .

22. Find the values of k for which the system of equations (3k-8)x + 3y + 3z = 0, 3x + (3k-8)y + 3z = 0, 3x + 3y + (3k-8)z = 0 has a non-trivial solution.

#### SECTION - D

Questions 23-26: Answer any 2 questions. Each question carries 5 marks. (2x5=10)

23. If 
$$y^{\cot x} + (\tan^{-1} x)^y = 1$$
, find  $\frac{dy}{dx}$ .

Z marks. (7x2=14)

24. If 
$$y = (\sin^{-1} x)^2$$
, prove that  $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ .

25. State and prove DeMorgan's Law. | d + s farti evor9 sadepiA neelood s .8 = d ,s to 1 | 1 |

26. Reduce the matrix 
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 into normal form and hence find its rank.

| MINIMAN BERNING                                                                                                                                                         | K22U 3425 16 USSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reg. No.:                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Name:                                                                                                                                                                   | 9. Given that x = cos t, y = sin t. Tod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21. Solve the system of equations x g 3 x 1/5 to 1 x 1                                                                                                                  | 10. Prove that in a Boolean algebra B,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I Semester B.Sc. Degree (CBCSS – O.B.E. – Resemble Improvement) Examination, Nove (2019 Admission Onward COMPLEMENTARY ELECTIVE COURSE IN 1C01 MAT-BCA: Mathematics for | egular/Supplementary/<br>mber 2022<br>s)<br>N MATHEMATICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Time: 3 Hours                                                                                                                                                           | Max. Marks : 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23. If y = eness's, profitolety in the SECTION - A                                                                                                                      | 13. Show that the matrix sint cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Questions 1 - 5, answer any four questions. Each que                                                                                                                    | stion carries one mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1. Find the derivative of sec <sup>2</sup> x.                                                                                                                           | 14, PHO DIE VEIGE OF & SOUTH THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Find the derivative of $\tan^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)$                                                                                             | 15. Does the set of equations 2x + y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Write the dual of the following statement:                                                                                                                              | to the second to |
| X + (y * Z) = (X + y) * (X + Z)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>4. Find the rank of the matrix (1 0)</li> <li>5. Show that A' is orthogonal if A is orthogonal.</li> </ul>                                                     | Questions 16 – 22, answer any four of the strow that $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SECTION - B                                                                                                                                                             | dy if y sin x + cos x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Questions 6 – 15, answer any seven questions. Each question carries two marks.

VD brief 0 = 1 + y + x + yx + 2y + 3x tent nevio .81.

- 6. Find the derivative of  $\log \left( \sqrt{x^2 + 1} \right)$ .

7. Given that  $y = 3 \sin x - \cos x$ . Prove that  $y_2 = y$ .

8. Find the n<sup>th</sup> derivative of sin (2x).

19. Find the n<sup>th</sup> derivative of cos<sup>2</sup> (3x).



- 9. Given that  $x = \cos t$ ,  $y = \sin t$ . Find  $\frac{d^2y}{dx^2}$ .
- 10. Prove that in a Boolean algebra B, x'' = x for all  $x \in B$ .
- 11. Prove that in a Boolean algebra B, (x \* y)' = 0 if and only if x \* y = x.
- COMPLEMENTARY ELECTIVE (0.0) NATHEMATICS (0.0)

  12. Find the month of the matrix (0.0) (0.0) (0.0)
- 13. Show that the matrix  $\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$  is orthogonal for all values of t.
- 14. Find the value of 'a' such that the rank of the matrix  $\begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 1 & a \end{pmatrix}$  is 2.
- 15. Does the set of equations 2x + y = 0, x y = -1 are consistant? Justify your answer.

SECTION - C

Questions 16 - 22, answer any four questions. Each question carries three marks.

16. Show that 
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

17. Find 
$$\frac{dy}{dx}$$
, if  $y = \frac{\sin x + \cos x}{\sin x - \cos x}$ .

P.T.O.

- Questions 6 15, answer any seven questions. Each question carries two marks.

  18. Given that  $x^2 + y^2 + xy + x + y + 1 = 0$ . Find  $\frac{dy}{dx}$ .
- 19. Find the nth derivative of cos2 (3x).

7. Given that  $y = 3 \sin x - \cos x$ . Prove that  $y_2 = y$ .

Show that A' is orthogonal if A is orthogonal

8. Find the nth derivative of sin (2x).

8. Find the derivative of log (vx² +1)

4 Find the rank of the matrix

20. Prove the following:

For any x in a Boolean algebra B, x + x = x.

- 21. Solve the system of equations x + 2y z = 3, x z = 1, -x + 4y + z = 5 using Crammer's rule.
- 22. Show that the vectors  $x_1 = (1, 2, 3)$ ,  $x_2 = (2, 1, 3)$ ,  $x_3 = (1, -2, 3)$  are linearly independent.

SECTION - D

Questions 23 - 26, answer any two questions. Each question carries five marks.

23. If 
$$y = e^{m \cos^{-1}x}$$
, prove that  $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$ .

24. Find  $\frac{dy}{dx}$  for the following

a) 
$$y = x^x + (\sin x)^x$$

b) 
$$y = \log (1 + \sin x)$$
.

- 25. If x + y = 1 and  $x \cdot y = 0$  in a Boolean Algebra B, prove that y = x'.
- 26. Test for consistency of the system of linear equations and solve them if consistant :

$$x - y = 0$$
,  $x + z = 2$ ,  $x + y + z = 3$ .



Reg. No. : .....

Name : .....



# I Semester B.Sc. Degree (CBCSS – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2021 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT-BCA: Mathematics for BCA I

Time: 3 Hours Max. Marks: 40

#### PART - A

Answer any 4 questions from this Part. Each question carries 1 mark.

- 1. Derive the derivative of tan x.
- 2. Find the derivative of  $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ .
- 3. Write the dual of the following statement.

$$a + a'b = a + b$$
.

- 4. If the rank of the matrix  $\begin{bmatrix} 1 & 2 \\ 3 & \lambda \end{bmatrix}$  is 1, find  $\lambda$ .
- 5. If A is an orthogonal square matrix, then prove that  $|A| = \pm 1$ .

#### PART - B

Answer any 7 questions from this Part. Each question carries 2 marks.

- 6. Find the derivative of  $\sqrt{\sin \sqrt{x}}$ .
- 7. If  $y = \sin^{-1} x$ , prove that  $(1 x^2) y_2 2xy_1 = 0$ .
- 8. Find the  $n^{th}$  derivative of  $e^{2x} \sin x \sin 2x$ .

#### K21U 6804





9. If 
$$x = \frac{1}{2} \left( t + \frac{1}{t} \right)$$
,  $y = \frac{1}{2} \left( t - \frac{1}{t} \right)$ , find  $\frac{d^2y}{dx^2}$ .

- 10. Prove that in a Boolean algebra B, a + 1 = 1 for all  $a \in B$ .
- 11. Show that the power set of  $A = \{a, b\}$  is a Boolean algebra.
- 12. Solve the system of equations x + y + z = 3, 2x + 4y z = 0, x 3y + 2z = 5.
- 13. Find value of a and b, if  $A = \frac{1}{\sqrt{2}} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$  is orthogonal.
- 14. Determine the rank of the matrix  $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 1 & 4 \end{bmatrix}$ .
- 15. Test for consistency the equations x + y + z = 2, x + 2y + 3z = 4, x + 3y + 4z = 5.

Answer any 4 questions from this Part. Each question carries 3 marks.

- 16. Derive the derivative of cos<sup>-1</sup> x.
- 17. Find  $\frac{dy}{dx}$ , if  $y = \frac{x^{\frac{1}{2}}(1-2x)^{\frac{2}{3}}}{(2-3x)^{\frac{3}{4}}(3-4x)^{\frac{4}{5}}}$ .
- 18. If  $x^3 + y^3 = 3axy$ , prove that  $\frac{d^2y}{dx^2} = -\frac{2a^2xy}{(y^2 ax)^3}$ .
- 19. Find the n<sup>th</sup> derivative of  $\frac{1}{x^2 + a^2}$  in terms of r and  $\theta$ .
- 20. State and prove absorption laws.
- 21. Find the value of  $\lambda$  and  $\mu$  so that the system of equations 4x + 5y + 6z = 16, x 5z = -9,  $x + 2y + \lambda z = \mu$  has (i) no solution, (ii) unique solution, (iii) infinite number of solutions.
- 22. Are the vectors  $x_1 = (1, 3, 4, 2)$ ,  $x_2 = (3, -5, 2, 2)$ ,  $x_3 = (2, -1, 3, 2)$ , linearly independent? If so, express one of these as a linear combination of the others.



#### PART - D

Answer any 2 questions from this Part. Each question carries 5 marks.

23. Find the derivatives of the following.

a) 
$$y = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}}$$
.

b) 
$$x^{\tan x} + (\sin x)^{\cos x}$$
.

24. If  $y = e^{a \cos^{-1}x}$ , prove that  $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (a^2 + n^2)y_n = 0$ . Further, find  $(y_n)_0$ .

25. Show that the following statements are equivalent in a Boolean algebra.

$$a) a + b = a$$

b) 
$$a * b = b$$

c) 
$$a + b = 1$$

d) 
$$a * b' = 0$$
.

26. a) Using Gauss-Jordan method find the inverse of the matrix  $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ .

b) Solve by Cramer's rule the system of equations 4x + 5y + 6z = 16, x - 5z = -9, x + 2y + 3z = 7.





20. Find  $\frac{\partial y}{\partial x}$  if  $x = a[\cos t + \log \tan(t/2)]$ ,  $y = a \sin t$ .

K20U 3326

Reg. No.:....

Name : .....

## I Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2020 (2019 Admn. Onwards)

#### COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01MAT-BCA: Mathematics for BCA – I

Time: 3 Hours

Max. Marks: 40

#### PART - A

Questions 1 - 5. Answer any 4 questions. Each question carries 1 mark.

- 1. Define equivalent matrices.
- 2. Write the nth derivative of sin(ax + b). Organic etail frametate a to laub enited .91
- 3. Define linear dependence.
- 4. Find the derivative of sin<sup>3</sup>x.
- 5. State complement laws in Boolean algebra.

Questions 6 – 15. Answer any 7 questions. Each question carries 2 marks.

- 6. Solve 2x + 3y = 5. 3x - 2y = 1 using Cramer's rule. All  $x = \frac{x}{2}$  and the evitavneb entron  $x = \frac{x}{2}$
- 7. Show that the vectors (1, 3, 4, 2), (3, -5, 2, 2) and (2, -1, 3, 2) are linearly dependent.
- 8. Define subalgebra. Give an example. another to your sevent. 35 55 another O
- 9. Find the derivative of  $\sqrt{\sec(2x+3)}$ .
- 10. Find the derivative of tanx.tanhx.
- 11. Find the n<sup>th</sup> derivative of  $\frac{x^2 + 3x + 3}{x + 1}$   $\frac{1}{x + 1}$
- 12. Find the rank of matrix  $\begin{bmatrix} 1 & 3 \\ 1 & -4 \\ -1 & 3 \end{bmatrix}$  by reducing it to normal form. neclocal entired as

13. If 
$$x^2 + y^2 = 1$$
 find  $\frac{d^2y}{dx^2}$ .

#### K20U 3326



Fime: 3 Hours

4. Find the derivative of sin3x.

13. If  $x^2 + y^2 = 1$  find  $\frac{d^3y}{dx^2}$ 

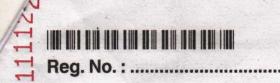
- 14. State De Morgan's laws in Boolean algebra.
- 15. State Leibnitz's theorem for nth derivatives.

Questions 16 - 22. Answer any 4 questions. Each question carries 3 marks.

16. Find the rank of 
$$\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$$

17. Find the n<sup>th</sup> derivative of  $\frac{x}{x^2-1}$ .

18. If 
$$(1 - x^2) y_2 - xy_1 - a^2y = 0$$
 prove that  $(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} - (n^2 + a^2)y_n = 0$ .


- 19. Define dual of a statement. State and prove principle of duality.
- 20. Find  $\frac{\partial y}{\partial x}$  if  $x = a[\cos t + \log \tan(t/2)]$ ,  $y = a\sin t$ .
- 21. For the matrix  $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$  find two non-singular matrices P and Q such that PAQ is in normal form.
- 22. Find the derivative of  $tan^{-1}\left(\frac{2x}{1-x^2}\right)$  with respect to  $sin^{-1}\left(\frac{2x}{1+x^2}\right)$ .

  PART D

Questions 23 - 26. Answer any 2 questions. Each question carries 5 marks.

- 24. If  $y = e^{a\sin^{-1}x}$ , show that  $(1 x^2) y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$ .
- 25. Define Boolean algebra and give two examples.
- 26. Differentiate [xtanx + sinxcosx]

O.T.9



Name : .....

I Semester B.Sc. Degree (CBCSS(OBE) - Regular)

Examination, November - 2019

(2019 Admissions)

Complementary Elective Course in MATHEMATICS

1C01MAT-BCA: MATHEMATICS FOR BCA 1

Time: 3 Hours

Max. Marks: 40

In swell a resolution a single ". B.

th, Find the min dementer of

west in facility one of all manes in 181

#### Part - A

#### (Questions 1 - 5)

Answer any Four questions. Each Question carries 1 mark.

- 1. Find the derivative of  $\frac{\sin x}{\cos x}$ .
- 2. If A is an orthogonal matrix then Show that  $A^{-1} = A^{1}$ .
- 3. State Rouche's theorem.
- 4. State involution law, in Boolean Algebra.
- 5. Write the nth derivative of ax+b.

#### Part - B

#### (Questions 6-15)

Answer any Seven questions. Each question carries 2 marks.

6. Test the consistency of the following system of equations

$$2x+6y+11 = 0$$

$$6x + 20y - 6z + 3 = 0$$

$$6y-18z+1=0$$



xiriem landgaribo na el A II - S

- 7. Find the inverse of the matrix  $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$ .
- 8. Give example for two isomorphic Boolean algebras.
- 9. Find the derivative of tan-1 (sinx).
- 10. Find the nth derivative of sinx. cosx.
- 11. Show that the transformation

$$Y_1 = 2x_1 + x_2 + x_3$$
  
 $Y_2 = x_1 + x_2 + 2x_3$   
 $Y_3 = x_1 - 2x_3$  is regular.

**12.** If 
$$xy = 1$$
 find  $\frac{d^2y}{dx^2}$ .

- 13. State Demorgan's laws in Boolean algebra.
- 14. Find the derivative of  $\frac{x^2+1}{x^2-1}$ .
- 15. Find the derivative of x2 using first principles.

#### Part - C

#### (Questions 16-22)

Answer any Four questions. Each question carries 3 marks.

16. Solve the system of equations

$$3x+y+2z = 3$$
$$2x-3y-z = -3$$
$$x+2y+z = 4$$

by Cramer's rule

- 17. Find the nth derivative of x2cosx.
- **18.** If  $y=\sin(m\sin^{-1}x)$  prove that  $(1-x^2)y_{n+2} 2(n+1)xy_{n+1} (m^2 n^2)y_n = 0$ .

- 9. Define dual of a statement. State and prove principle of duality.
- **20.** Find  $\frac{\partial y}{\partial x}$  if  $x = a\cos^3 t$ ,  $y = a\sin^3 t$ .
- **21.** For the matrix  $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$  find two nonsingular matrices P and Q

such that PAQ is in normal form.

22. Find the derivative of  $\sin^{-1}\left(\frac{2x}{1-x^2}\right)$  with respect to  $\tan^{-1}x$ .

#### Part - D

#### (Questions 23-26)

Answer any Two questions. Each question carries 5 marks.

- 23. Using partition method find the inverse of  $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix}$
- 24. Find the n<sup>th</sup> derivative of  $\frac{x}{(x-1)(2x+3)}$ .
- 25. Define Boolean algebra and sub algebra. Give an example.
- **26.** Differentiate  $\frac{x^{\frac{1}{2}}(1-2x)^{\frac{2}{3}}}{(2-3x)^{\frac{3}{4}}(3-4x)^{\frac{4}{5}}}.$